DETERMINING THE STEADY-STATE TEMPERATURE FIELD
IN A CRACKED PLATE WITH HEAT TRANSFER FROM
THE LATERAL SURFACES

G. S. Kit and O, V. Poberezhnyi UDC 536,12

The heat conduction problem is considered in the case of a plate with a thermally insulated
straight crack and with a given prior temperature field in the solid plate. The heat trans-
fer from the plate to the ambient medium is assumed to follow Newton's law.

We consider an infinitely large thin plate of thickness 26 with a thermally insulated straight crack of
length 21, the latter located on the 0x axis symmetrically about the origin of coordinates. The heat trans-
fer from this plate to the ambient medium is assumed to follow Newton's law, and the temperature field in
the solid plate is described by a given function t*(x, y). It is required to determine the temperature field
T(x, y) satisfying both the equation of heat conduction

2
ZZ +4- %y—f—— — 02T = — n¥,, (1)
in dimensionless variables referred to half the crack length 7 and also the condition of thermal insulation
—‘% - for g =0, jxi<l. | )
The general solution to Eq. (1) will be sought in the form
T, y) =t 9+t y), (3

where t(x, y) is the solution to the homogeneous equation corresponding to Eq, (1) with condition (2).

With the temperature field t{x, y) represented as an analog of the logarithmic double-layer potential
[1]

1
o, 9 = —— S v (x*)g‘f’7 K, (#r) dx,, 4
1 ®

the condition of thermal insulation (2) yields the following expression for the derivative of density v (x) [21]:
! '
g Y E) K@ dg = — % f(x), (5)
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where
0t*(x, 0)
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(6)
K (w) = \S\ Kﬂﬂ%ﬁ sin nwdn = K, () -- § K, (w) dw.
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No exact method of solving Eq. (5) is known yet. We will, therefore, consider certain approximate
methods of solution,

1. We will find a solution to Eq. (5) for small values of % {x < 1). Using the series expansion of func-
tions Ky(w), Kq(w) for small values of w in [3], we obtain

K (@) — -lw— + Ea @ 4 In (€ — x) wam

n=0
a, = b_{s, — (4n + 3) (20 + 1) @ + DI, )
b, = — (2 @n+1)@n+ 2 s, =C+ln _;L B\ %, (8)

k=1

il

where C is the Euler constant.

Inserting (7) into (5), we have
1
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or, after application of the inversion theorem,
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Equation (10) will be solved by the asymptotic method shown in {4, 5. The solution will be sought in
the form of a power series in n:

Y= 3wy . (an
=0

Inserting (11) into (10) and equating respective terms of the same power in ®, we obtain the following
recurrence formulas for y ;l(x):

Y, (%) = —~;lt {Clﬁj_ ( VTI 7 f(r)d’c},
it

aVYl—x°

+ by In{E— 7] (&—r)w“kﬁld‘g} (i=0,1,2 ... | (12)

Having determined the unknown function y'(x) from (11) with the aid of (12), we then determine y(x)
directly by integration. The arbifrary integration constant C; is then determined from the condition that
Y1) = 0.

2. We will now consider large values of n(® > 1). By the method developed in [6, 7] we find the
asymptotic solution to Eq. (5) as the combination

V(@ =ox{l+ 1] —ox{l —1)] (13)
of solutions w(r) to the Wiener —Hopf integral equation
gm(r)K(T——-C) dt = — (7). (14)

0
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Here function (&) = (2/w)f(Z/n — 1) continues analytically into the region 2n < £ < w.

Equation (14) with kernel (6) is solved exactly by the Weiner—Hopf method, Considering that y(+1)
= 0 and taking into account expression (13), we determine function y{(x) as

1
V() = [{ol(l +8l— ol (1 — gl (15)

We note that for a semiinfinite crack (0 = x < ) Eq. (5) becomes Eq. (14) and, as a consequence, we
obtain an exact solution fo the problem.

3. An approximate solution to Eq. (5) can be obtained in closed form, if the following approximationy
is used in expression (6)

/ne 1 .
n
The kernel of the integral equation (5) becomes then
' 20
K% —x)] = ( 1 — ) , (17
2 u—7v
and Eq. (5) can be written as
d
j' yede 1 f@) (18)
u—v ® v

with u = exp (" t), v = exp (T1x), ¢ = exp (—7x), and d = exp (7).

The solution to Eq. (18) is given by the inversion formula

o I VI— =9
v (6 = xV(d——v)(v-—c) j i f(u)du+C} (19)

Integrating Eq. (19) and changing to variable x yields y{x). The arbitrary constant C, and the integra-
tion constant are determined from the condition that y (1) = 0,

Formula (19) yields an approximate solution to Eq, (5). It can be shown, moreover, that the error
of this solution does not exceed the error of t_hat approximation (16).

Thus, with the function y(x) known, formula (4) yields the perturbation temperature t(x, y) and,
specifically,
Hx, £0) =+ ;— v (). (20)

Example. Let the temperature of the upper and the lower surface of an infinitely long strip, a plate
of width 2b, be <t; and the ambient temperature be zero, Then

#(5) = - showy, (21)

with g = #t; sinhnb. If the width b is sufficiently large, then the plate can be considered infinite.

In the plate there is a crack of length 21 on the 0x axis, symmetrical about the Oy axis. The Ox axis
is equidistant from the upper and the lower strip-plate surface.

In order to determine the perturbation temperature in such a plate, it is necessary to find the func-
tion y(x) from Eq. (5), where f(x) = 0t¥/ oy ly:() =g. We will seek a solution to this equation according to the
formulas provided here.

1. For small values of ®, function y(x) is found by formula (11) in conjunction with (12). Retaining
only the first three terms, we have

{The maximum relative error of such an approximation is as high as 8.3% when 7 = 1.2 and it decreases
fast as 1 increases or decreases.
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15 ~
3 Fig.1. Graph of v(0)/q = f(w):
1) according to formula (22); 2)
10 “ according to formula (24); 3)
2 \ according to formula (25),
95 ~_

g ! 2 7 ?

2 (s
Y = qz d2k+1(1 — x%) ,

k=0
where

dy= 2{1 +(0.25In %—0.3272) »* 4 (0.0625 In® » — 0.1253 in x — 0,0253) %],
dy = —2[0,0833 »* + (00313 In» — 0,1228) %], d, = 0.0062x2.

2. For large values of n, the solution to Eq, (14) is

o) =29 P79
VvV VT
and then
2q
V() = == {erf @ () + erf @(—x) — erf (1)},
where

9() =Vu(l+x); erfx -2 5\ exp (— 2% dz.
. Va
0

3. Finally, formula (19) yields

N 29 . . &
v(x) = e E arcsin {cth sz — csh mue exp [(— 1) siuex]}.

k=1

The quantity y(0)/q has been plotted in Fig.1 as a function of ®: curve 1 represents formula (22) for
n < 1, curve 2 represents formula (24) for ® > 1, and curve 3 represents formula (25) for all values of n.

It can be seen here that curves 1 and 2 come close together as ® = 1 and do not differ much from
curve 3. Formula (25) is most convenient for practical calculations, because it applies to all values of «.

NOTATION
T(x, ) is the temperature of plate with crack;
t a(x, y) is the temperature of ambient medium;
t*(x, y) is the temperature of plate without a crack;
tx, y) is the function characterizing the perturbation of the temperature field by the presence of a
crack;
w2 =al/on;
o is the heat transfer coefficient;
21 is the length of crack;
26 is the thickness of plate;
A is the thermal conductivity;
Ky(x), Ky(x) are the zeroth-order and first-order MacDohald function;
T is the distance of point (x, 0) (-1=x =1) from an arbitrary point on the x0y plane;
y(x) is the density of the analog of the logarithmic double-layer potential,
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